If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+6X-2040=0
a = 1; b = 6; c = -2040;
Δ = b2-4ac
Δ = 62-4·1·(-2040)
Δ = 8196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8196}=\sqrt{4*2049}=\sqrt{4}*\sqrt{2049}=2\sqrt{2049}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2049}}{2*1}=\frac{-6-2\sqrt{2049}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2049}}{2*1}=\frac{-6+2\sqrt{2049}}{2} $
| n-40=-11 | | -7=-6-x | | 8-5x/2=4-x | | 12x-4=4x8 | | 9v+10=-8=18 | | 125=7x+5+24x-4 | | 12x-4=4x-8 | | -39+v=-54 | | 59=2x-37 | | 64^x=4095 | | 8x−42=3x | | 10+p=13 | | 3x+52=7 | | 11x+8=48+6x+20 | | 2/3x+1/6=4 | | -8.8=-7.8+v/10.4 | | 10x+11x+3x+x=250 | | 5x8+2=42 | | 4x+21=2x+29 | | 5x5=60/5 | | –3x+9x=5x+100 | | -103.5=3.7x-6.5(4.1+2.2x) | | -3n^2+18n=0 | | 9x+24=3×7+3x | | (3x+10)=(2x-30)= | | 3(y−6)=24 | | x^2-6x+9.5=9 | | -1/2(y-1)=0.8 | | 9=mm+9 | | (b-1/4)/3=-4 | | 0.2×x=5 | | -1/2=1/2(n+1/2 |